

Calculation Guidance

Addition - National Curriculum

EYFS	Number - Have a deep understanding of number to 10 , including the composition of each number. - Subitise (recognise quantities without counting) up to 5. - Automatically recall (without reference to rhymes, counting or other aids) number bonds up to 5 (including subtraction facts) and some number bonds to 10 , including double facts. Numerical Patterns - Verbally count beyond 20, recognising the pattern of the counting system. - Compare quantities up to 10 in different contexts, recognising when one quantity is greater than, less than or the same as the other quantity. - Explore and represent patterns within numbers up to 10 , including evens and odds, double facts and how quantities can be distributed equally.
Year 1	- read, write and interpret mathematical statements involving addition (+) and equals ($=$) signs - THIS MEANS THE SAME AS - relate this to balance number sentences and scales - represent and use number bonds and related subtraction facts within 20 - add one-digit and two-digit numbers to 20, including zero - solve one-step problems that involve addition, using concrete objects and pictorial representations, and missing number problems such as $9=\square+7$.
Year 2	- solve problems with addition: - using concrete objects and pictorial representations, including those involving numbers, quantities and measures - applying their increasing knowledge of mental and written methods - recall and use addition facts to 20 fluently, and derive and use related facts up to 100 - add numbers using concrete objects, pictorial representations, and mentally, including: - a two-digit number and ones - a two-digit number and tens - two two-digit numbers - adding three one-digit numbers - show that addition of two numbers can be done in any order (commutative) and subtraction of one number from another cannot - recognise and use the inverse relationship between addition and subtraction and use this to check calculations and solve missing number problems
Year 3	- add numbers mentally, including: - a three-digit number and ones - a three-digit number and tens - a three-digit number and hundreds - add numbers with up to three digits, using formal written methods of columnar addition - estimate the answer to a calculation and use inverse operations to check answers - solve problems, including missing number problems, using number facts, place value, and more complex addition.
Year 4	- add with up to 4 digits using the formal written methods of columnar addition where appropriate

	- estimate and use inverse operations to check answers to a calculation • solve addition two-step problems in contexts, deciding which operations and methods to use and why.
Year 5	• add whole numbers with more than 4 digits, including using formal written methods (columnar addition) - add numbers mentally with increasingly large numbers - use rounding to check answers to calculations and determine, in the context of a problem, levels of accuracy - solve addition multi-step problems in contexts, deciding which operations and methods to use and why.
$\underline{\text { Year 6 }}$	- solve addition multi-step problems in contexts, deciding which operations and methods to use and why

Addition

KS1 Addition Facts - These should be regularly practiced by the children in order to achieve automatic recall.

Adding I	Bonds to 10	Adding 10	Bridging/compensating	,
Adding 2	Adding 0	Doubles	Near doubles	\square facts

+	0	1	2	3	4	5	6	7	8	9	10
0	$0+0$	$0+1$	$0+2$	$0+3$	$0+4$	$0+5$	$0+6$	$0+7$	$0+8$	$0+9$	$0+10$
1	$1+0$	$I+1$	$1+2$	$1+3$	$1+4$	$1+5$	$1+6$	$1+7$	$1+8$	$1+9$	$1+10$
2	$2+0$	$2+1$	$2+2$	$2+3$	$2+4$	$2+5$	$2+6$	$2+7$	$2+8$	$2+9$	$2+10$
3	$3+0$	$3+1$	$3+2$	$3+3$	$3+4$	$3+5$	$3+6$	$3+7$	$3+8$	$3+9$	$3+10$
4	$4+0$	$4+1$	$4+2$	$4+3$	$4+4$	$4+5$	$4+6$	$4+7$	$4+8$	$4+9$	$4+10$
5	$5+0$	$5+1$	$5+2$	$5+3$	$5+4$	$5+5$	$5+6$	$5+7$	$5+8$	$5+9$	$5+10$
6	$6+0$	$6+1$	$6+2$	$6+3$	$6+4$	$6+5$	$6+6$	$6+7$	$6+8$	$6+9$	$6+10$
7	$7+0$	$7+1$	$7+2$	$7+3$	$7+4$	$7+5$	$7+6$	$7+7$	$7+8$	$7+9$	$7+10$
8	$8+0$	$8+1$	$8+2$	$8+3$	$8+4$	$8+5$	$8+6$	$8+7$	$8+8$	$8+9$	$8+10$
9	$9+0$	$9+1$	$9+2$	$9+3$	$9+4$	$9+5$	$9+6$	$9+7$	$9+8$	$9+9$	$9+10$
10	$10+0$	$10+1$	$10+2$	$10+3$	$10+4$	$10+5$	$10+6$	$10+7$	$10+8$	$10+9$	$10+10$

Stem sentences	Concrete (Can we make it?)	Pictorial (Can we dravk it?)	Abstract (Can we write the equation?)
I know that \qquad _ plus \qquad is equal to \qquad . (single-digit addends) So \qquad tens plus \qquad tens is equal to \qquad tens. (multiple-of-ten addends) \qquad plus \qquad is equal to one hundred and _. \qquad Year 3	 tens $70+50=120$	$\begin{aligned} & 70+50= \\ & 70+30=100 \\ & 100+20=120 \end{aligned}$	
I know that \qquad plus \qquad is equal to \qquad (single-digit addends) So \qquad tens plus \qquad tens is equal to \qquad tens. (multiple-of-ten addends) \qquad is equal to one hundred and __. Year 3	$87+30=110+7=117$	$\begin{aligned} 87+30 & =80+30+7 \\ & =110+7 \\ & =117 \end{aligned}$	$\begin{aligned} 87+30 & =80+7+30 \\ & =110+7 \\ & =117 \end{aligned}$
First we add: \qquad plus \qquad is equal to \qquad ... then we adjust: \qquad minus \qquad is equal to \qquad Year 3		$\begin{aligned} & 520+299= \\ & 520+300=820 \\ & 820-1=819 \end{aligned}$	$\begin{aligned} & \mathbf{6 9}+\mathbf{6 9}=138 \\ & 70+70=140 \end{aligned}$

If the column sum is equal to ten or more, we must exchange. Year 4	See Year 3/4 examples	See Year 3/4 examples	
If the column sum is equal to ten or more, we must exchange. Years 5 and 6	See Year 3 examples	See Year 3/4 examples	As in Year 4 but using numbers with more than 4 digits, adding more than two numbers and adding decimal numbers. $\begin{gathered} 43432 \\ +25648 \\ \frac{31234}{100314} \\ \hline 111111 \end{gathered}$

Addition - Key mental strategies for Key Stage 2

Strategy	Concrete (Can we make it?)	Pictorial (Can we draw it?)	Abstract (Can we write the equation?)
Bridging through a multiple of 10,100 , etc Years 3, 4, 5 and 6		$\begin{aligned} & 7+5= \\ & 7+3=10 \\ & 10+2=12 \end{aligned}$	
Compensating - rounding to the nearest multiple 10, 100, etc and adjusting Years 3, 4, 5 and 6	$35+49=34+50=84$	$\begin{aligned} & 520+299= \\ & 520+300=820 \\ & 820-1=819 \end{aligned}$	$\begin{aligned} & \mathbf{6 9 + 6 9}=138 \\ & 70+70=140 \end{aligned}$

Subtraction - National Curriculum

EYFS	Number - Have a deep understanding of number to 10 , including the composition of each number. - Subitise (recognise quantities without counting) up to 5. - Automatically recall (without reference to rhymes, counting or other aids) number bonds up to 5 (including subtraction facts) and some number bonds to 10, including double facts. Numerical Patterns - Verbally count beyond 20, recognising the pattern of the counting system. - Compare quantities up to 10 in different contexts, recognising when one quantity is greater than, less than or the same as the other quantity. - Explore and represent patterns within numbers up to 10 , including evens and odds, double facts and how quantities can be distributed equally.
Year 1	- read, write and interpret mathematical statements involving subtraction (-) and equals (=) signs - represent and use number bonds and related subtraction facts within 20 - subtract one-digit and two-digit numbers to 20, including zero - solve one-step problems that involve subtraction, using concrete objects and pictorial representations, and missing number problems such as $9=\square-7$.
Year 2	- solve problems with subtraction: - using concrete objects and pictorial representations, including those involving numbers, quantities and measures - applying their increasing knowledge of mental and written methods - recall and use subtraction facts to 20 fluently, and derive and use related facts up to 100 - subtract numbers using concrete objects, pictorial representations, and mentally, including: - a two-digit number and ones - a two-digit number and tens - two two-digit numbers - subtracting three one-digit numbers - show that addition of two numbers can be done in any order (commutative) and subtraction of one number from another cannot - recognise and use the inverse relationship between addition and subtraction and use this to check calculations and solve missing number problems
Year 3	- subtract numbers mentally, including: - a three-digit number and ones - a three-digit number and tens - a three-digit number and hundreds - a three-digit number and thousands - subtract numbers with up to three digits, using formal written methods of columnar subtraction - estimate the answer to a calculation and use inverse operations to check answers - solve problems, including missing number problems, using number facts, place value, and more complex subtraction.
Year 4	- subtract with up to 4 digits using the formal written methods of columnar subtraction where appropriate

	- estimate and use inverse operations to check answers to a calculation • solve subtraction two-step problems in contexts, deciding which operations and methods to use and why.
Year 5	• subtract whole numbers with more than 4 digits, including using formal written methods (columnar subtraction) • subtract numbers mentally with increasingly large numbers - use rounding to check answers to calculations and determine, in the context of a problem, levels of accuracy - solve subtraction multi-step problems in contexts, deciding which operations and methods to use and why.
$\underline{\text { Year 6 }}$	• solve subtraction multi-step problems in contexts, deciding which operations and methods to use and why

Subtraction

Stem sentences	Concrete (Can we make it?)	Pictorial (Can we draw it?)	Abstract (Can we write the equation?)
	I have 8 counters. 5 counters are red. How many are blue?	There are 6 children. 2 have their coat on. How many do not have their coat on?	There are 8 flowers. 2 are red and the rest are yellow. How many are yellow? $8-2=6$
First... Then... Now... e.g. First there were 4 children in the car, then 1 child got out. Now there are 3 children in the car. Year R/1	Role play 'getting out of a car'.		
We partition the \qquad int __ \qquad and \qquad First we subtract the \qquad from \qquad t o get to 10 . Then we subtract the remaining \qquad from 10. We know 10 minus \qquad is equal to \qquad Year 2	$\begin{aligned} & 12-4= \\ & 12-2=10 \\ & 10-2=8 \end{aligned}$ 12 -	First there were 12 children on the ride. Then 4 got off. Now there are 8 children on the ride.	$\begin{aligned} & 12-4= \\ & 12-2=10 \\ & 10-2=4 \end{aligned}$
There are more \qquad than \qquad There are fewer __ than \qquad _. \qquad The difference between \qquad and \qquad is \qquad Year 2	The difference between 2 and 5 is 3 . The difference between 5 and 2 is 3 .	The difference between 4 and 7 is 3 . The difference between 7 and 4 is 3 .	5 red cars 3 blue cars $5-3=2$

I know that \qquad minus \qquad is equal to \qquad (single-digit fact) So \qquad minus \qquad is equal to \qquad . (related twodigit minus single digit fact) I know that ten minus \qquad is equal to \qquad so \qquad minus \qquad is equal to \qquad Year 2			
I know that \qquad minus \qquad is equal to \qquad So \qquad tens minus \qquad tens is equal to \qquad tens. Year 2	$70-30=40 \text { so } 75-30=45$		$5-3=2$ 5 tens -3 tens $=2$ tens $50-30=20$
First I subtract the tens, then I subtract the ones. Year 2	$\begin{aligned} & 45-23= \\ & 45-20=25 \\ & 25-3=22 \end{aligned}$	$67-34=33$	$45-23=22$
First I subtract the tens, then I subtract the ones. Year 2		$62-34=28$	$63-17=46$

I know that \qquad minus \qquad is equal to \qquad (bridging ten) So \qquad tens minus \qquad tens is equal to \qquad tens. (bridging ten tens) One hundred and \qquad minus \qquad is equal to \qquad Year 3	See Year 2 (bridging)	$\begin{aligned} & 120-30= \\ & 120-20=100 \\ & 100-10=90 \end{aligned}$	$\begin{gathered} 120 \cdot-30=90 \\ 100 \\ 120-30= \\ 120-20=100 \\ 100-10=90 \end{gathered}$
I know that \qquad minus \qquad is equal to \qquad (bridging ten) So \qquad tens minus \qquad tens is equal to \qquad tens. (bridging ten tens) One hundred and \qquad minus \qquad is equal to \qquad Year 3	\longrightarrow $126-70=56$	$\underbrace{56}_{-70}$	$\begin{aligned} & \\ 126-70 & =120-70+6 \\ & =50+6 \\ & =56 \end{aligned}$
We partition the \qquad into \qquad and _. First we subtract the \qquad from \qquad to get to a multiple of 10 . Then we subtract the remaining \qquad fro rom the multiple of 10 . We know 10 minus \qquad is equal to \qquad _so \qquad minus \qquad is equal to \qquad Year 3		544-16	Count back to multiples of 10/100
We partition the \qquad into \square and \qquad First we add the \qquad to \qquad to get to 100 . Then we add the remaining \qquad to 100. We know 100 plus \qquad is equal to -. \qquad Year 3		$123-97=26$	Count on to multiples of 10/100

If there is an insufficient number to subtract from in a given column, we must exchange from the column to the left. Year 4	See Year previous examples	See previous examples	
If there is an insufficient number to subtract from in a given column, we must exchange from the column to the left. Years 5 and 6	See Year 3/4 examples	See Year 3/4 examples	As in Year 4 but using numbers with more than 4 digits Using numbers with decimals. Using multiple exchanges across 0 . $\begin{gathered} \begin{array}{r} 20008-2518= \\ 199990 \\ 200108 \\ -\quad 2518 \\ -\quad 17490 \\ \hline 1749 \end{array} \end{gathered}$

Subtraction - Key mental strategies for Key Stage 2

Strategy	Concrete (Can we make it?)	Pictorial (Can we draw it?)	Abstract (Can we write the equation?)
Bridging through a multiple of 10, 100, etc Years 3, 4, 5 and 6		$\begin{aligned} & 120-30= \\ & 120-20=100 \\ & 100-10=90 \end{aligned}$	
Compensating - rounding to the nearest multiple 10, 100, etc and adjusting Years 3, 4, 5 and 6	$152-29$		$\begin{aligned} & 152-30=122 \\ & 122+1=123 \end{aligned}$

EYFS	
Year 1	- solve one-step problems involving multiplication, by calculating the answer using concrete objects, pictorial representations and arrays with the support of the teacher.
Year 2	- recall and use multiplication facts for the 2,5 and 10 multiplication tables, including recognising odd and even numbers - calculate mathematical statements for multiplication within the multiplication tables and write them using the multiplication (\times) and equals (=) signs - show that multiplication of two numbers can be done in any order (commutative) and division of one number by another cannot - solve problems involving multiplication and division, using materials, arrays, repeated addition, mental methods, and multiplication and division facts, including problems in contexts.
Year 3	- recall and use multiplication facts for the 3,4 and 8 multiplication tables - write and calculate mathematical statements for multiplication using the multiplication tables that they know, including for two-digit numbers times one- digit numbers, using mental and progressing to written methods - solve problems involving missing number problems involving multiplication including positive number scaling problems and correspondence problems where n objects are connected to m objects.
Year 4	- recall and use multiplication facts for multiplication tables up to 12×12 - use place value, known and derived facts to multiply mentally, including: $x 0 \times 1$ and multiplying together three numbers - recognise and use factor pairs and commutativity in mental calculations - multiply two-digit and three-digit numbers by a one-digit number using formal written layout - solve problems involving multiplying, including the distributive law to multiply two-digit numbers by one-digit including positive number scaling problems and correspondence problems where n objects are connected to m objects.
Year 5	- identify multiples and factors: all factor pairs of a number, common factors of two numbers, establish whether a number up to 100 is prime and recall prime numbers up to 19 - multiply numbers up to four digits by a one- or two-digit number using a formal written method - multiply whole numbers and those involving decimals by 10,100 and 1000.
Year 6	- identify multi-digit numbers up to 4 digits by a two-digit number using formal, long multiplication - identify common factors, common multiples and common prime numbers - use their knowledge of the order of operations to carry out calculations involving the four operations

Multiplication

Stem sentences	Concrete (Can we make it?)	Pictorial (Can we draw it?)	Abstract (Can we write the equation?)
One group of two, two groups of two, three groups of $2, \ldots$ Ten, twenty, thirty, ... One five, two fives, three fives, ... Year R/1		$\begin{array}{l\|l\|l\|l\|l\|l\|l\|l\|l\|c\|c\|c\|c\|c\|c\|c\|} \hline & \mid \\ \hline \end{array}$	10, 20, 30, ...
There are \qquad coins. Each coin has a value of p. \qquad This is \qquad p. Year 1	Representing each group by one object		Five $2 p$ coins $=10 p$
There are \qquad in each group. There are \qquad groups. There are \qquad in a group and \qquad groups. Year 2		5 5 5	$\begin{aligned} & 2+2+2+2=8 \\ & 2 \times 4=8 \\ & 5+5+5=15 \\ & 5 \times 3=15 \end{aligned}$
Factor times factor is equal to the product. The product is equal to factor times factor. Year 2	Unitising equal groups - representing each group by one object		$\begin{aligned} & 2 \times 3=6 \\ & 6=2 \times 3 \end{aligned}$
\qquad times \qquad can represent \qquad in a group and groups. It can also represent \qquad groups of _. \qquad Multiplication is commutative. Year 2			$2 \times 5=5 \times 2$

Multiplication - Key mental strategies for Key Stage 2

| Strategy |
| :--- | :--- | :--- | :--- |
| Adjacent multiples of _ have a difference of |
| _ |

Products in the 10 times table can be used to find products in the 9 times table. (NCETM Year 3 unit 2.8) Year 4 onwards					$9 \times 4=10 \times 4-1 \times 4$
Products in the 10 times table can be used to find products in the 11 times table and 12 times table. Year 4 onwards		3	30	6	$\begin{aligned} 12 \times 3 & =10 \times 3+2 \times 3 \\ & =30+6 \\ & =36 \end{aligned}$

EYFS	
Year 1	- solve one-step problems involving division, by calculating the answer using concrete objects, pictorial representations and arrays with the support of the teacher.
Year 2	- recall and use multiplication and division facts for the $2,3,5$ and 10 multiplication tables, including recognising odd and even numbers - calculate mathematical statements for division within the multiplication tables and write them using the signs \div and $=$ - show that multiplication of two numbers is commutative but division is not - solve problems involving division using materials, arrays, repeated addition, mental methods and division facts, including problems in contexts.
Year 3	- recall and use multiplication and division facts for the 3,4 and $8 \times$ tables - write and calculate mathematical statements for division using the multiplication tables they know, including 2-digit divided by 1-digit using mental and progressing to formal written methods - solve problems, involving missing number problems, involving division, including positive number scaling problems and correspondence problems where n objects are connected to m objects *Non statutory division 2 digit by 1 digit
Year 4	- recall multiplication and division facts up to 12×12 - use place value, known and derived facts to divide mentally, including dividing by 1 - solve problems involving dividing a three-digit number by one-digit and number using a formal layout
Year 5	- identify multiples and factors, including finding all factor pairs of a number, common factors of two numbers, know and use the vocabulary of prime numbers and establish whether a number up to 100 is prime - multiply and divide numbers mentally drawing on known facts - divide numbers up to 4 digits by a one-digit number using a written method and interpret remainders appropriately for the context - divide whole numbers and those involving decimals by 10,100 and 1000.
Year 6	- divide numbers up to 4 digits by a two-digit number using the formal written method of long division, and interpret remainders as whole number remainders, fractions, or by rounding as appropriate for the context. - divide numbers up to 4 digits by a two-digit number using the formal written method of short division as appropriate.

Division

Stem sentences	Concrete (Can we make it?)	Pictorial (Can we draw it?)	Abstract (Can we write the equation?)
One group of two, two groups of two, three groups of $2, \ldots$ Ten, twenty, thirty, ... One five, two fives, three fives, ... Year R/1			6 biscuits shared between 2 children gives 3 biscuits each.
The \qquad costs p. \qquad Each coin has a value of \qquad p. So I need \qquad coins. Year 1			Five $2 p$ coins $=10 p$
\qquad is divided into groups of \qquad There are \qquad groups. We can skip count using the divisor to find the quotient. Year 2			$\begin{aligned} & 5+5+5=15 \\ & 15 \div 5=3 \end{aligned}$
\qquad divided between \qquad is equal to \qquad each. We can skip count using the divisor to find the quotient. Year 2			One 5 is 1 each. That's 5. Two 5 s is 2 each. That's 10 . $10 \div 5=2$

$1 f$ dividing the tens gives a remainder of one
or more tens, we must exchange the
remaining tens for ones.
Year 4

If there is a multiplicative change to the
dividend factor and a corresponding change
to the divisor, the quotient remains the
same.
If I multiply the dividend by \quad, I must
multiply the divisor by __ for the quotient to
remain the same.
Year $\mathbf{5}$ and $\mathbf{6}$

