

Calculation Guidance

EYFS	Number
	 Have a deep understanding of number to 10, including the composition of each number.
	 Subitise (recognise quantities without counting) up to 5.
	• Automatically recall (without reference to rhymes, counting or other aids) number bonds up to 5 (including subtraction facts) and some number bonds to 10,
	including double facts.
	Numerical Patterns
	 Verbally count beyond 20, recognising the pattern of the counting system.
	• Compare quantities up to 10 in different contexts, recognising when one quantity is greater than, less than or the same as the other quantity.
	• Explore and represent patterns within numbers up to 10, including evens and odds, double facts and how quantities can be distributed equally.
Year 1	• read, write and interpret mathematical statements involving addition (+) and equals (=) signs – THIS MEANS THE SAME AS – relate this to balance number
	sentences and scales
	 represent and use number bonds and related subtraction facts within 20
	 add one-digit and two-digit numbers to 20, including zero
	• solve one-step problems that involve addition, using concrete objects and pictorial representations, and missing number problems such as 9 = 🗆 + 7.
Year 2	 solve problems with addition:
	 using concrete objects and pictorial representations, including those involving numbers, quantities and measures
	 applying their increasing knowledge of mental and written methods
	 recall and use addition facts to 20 fluently, and derive and use related facts up to 100
	 add numbers using concrete objects, pictorial representations, and mentally, including:
	• a two-digit number and ones
	• a two-digit number and tens
	• two two-digit numbers
	• adding three one-digit numbers
	 show that addition of two numbers can be done in any order (commutative) and subtraction of one number from another cannot
	• recognise and use the inverse relationship between addition and subtraction and use this to check calculations and solve missing number problems
<u>Year 3</u>	add numbers mentally, including:
	• a three-digit number and ones
	• a three-digit number and tens
	• a three-digit number and nundreds
	• add numbers with up to three digits, using formal written methods of columnar addition
	• estimate the answer to a calculation and use inverse operations to check answers
	• solve problems, including missing number problems, using number facts, place value, and more complex addition.
<u>Year 4</u>	 add with up to 4 digits using the formal written methods of columnar addition where appropriate

Addition – National Curriculum

	estimate and use inverse operations to check answers to a calculation
	 solve addition two-step problems in contexts, deciding which operations and methods to use and why.
Year 5	 add whole numbers with more than 4 digits, including using formal written methods (columnar addition)
	 add numbers mentally with increasingly large numbers
	 use rounding to check answers to calculations and determine, in the context of a problem, levels of accuracy
	 solve addition multi-step problems in contexts, deciding which operations and methods to use and why.
Year 6	 solve addition multi-step problems in contexts, deciding which operations and methods to use and why

Stem sentences	Concrete (Can we make it?)	Pictorial (Can we draw it?)	Abstract (Can we write the equation?)
is the whole, is a part, is a part. = plus and plus = There are in total.		3+2=5 2+3=5 5=3+2 5=2+3	$\begin{array}{c} 2 \\ 5 \\ 3 \\ 3 \\ 3 \\ 3 \\ 5 \\ 2 + 3 \\ 5 \\ 5 \\ 2 + 3 \\ 5 \\ 3 \\ 5 \\ 3 \\ 5 \\ 3 \\ 5 \\ 3 \\ 2 \\ 5 \\ 3 \\ 2 \\ 3 \\ 5 \\ 3 \\ 2 \\ 3 \\ 5 \\ 3 \\ 2 \\ 3 \\ 2 \\ 3 \\ 5 \\ 3 \\ 2 \\ 3 \\ 5 \\ 3 \\ 2 \\ 3 \\ 5 \\ 3 \\ 2 \\ 3 \\ 5 \\ 3 \\ 2 \\ 3 \\ 5 \\ 3 \\ 2 \\ 3 \\ 5 \\ 3 \\ 2 \\ 3 \\ 2 \\ 3 \\ 5 \\ 3 \\ 2 \\ 3 \\ 2 \\ 3 \\ 3 \\ 2 \\ 3 \\ 3 \\ 2 \\ 3 \\ 3$
Year R/1	3+4=7 7=3+4 4+3=7 7=4+3 5+3=8 8=5+3 3+5=8 8=3+5		3 2
First Then Now e.g. First there were 4 children on the bus, then 3 children got on. Now there are 7 children on the bus. Year R/1	Role play getting 'on the bus' or use a toy bus.	First Then Now $4+3=7$	First Then Now 4 + 3 7 4 + 3 = 7 4 + 3 = 7 4 + 2 = 6
We can look for pairs of addends which sum to 10. plus is equal to 10, then 10 plus is equal to Year 2	3 + 5 + 7 = 5 + 10	7 (5) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	3 + 5 + 7 = 3 + 7 + 5 = 10 + 5 = 15

Addition

		KS1	Addition	Facts – T	hese shou	ıld be reg	ularly pi	racticed by	the childr	en in ord	ler to achie	eve automatic recall.	
A	dding I		Bonds	to I0	A	dding IC)	Bridging/c	compens	ating			YI facts
A	dding 2		Addir	ng O		Doubles		Near d	oubles				facts
+	0	I	2	3	4	5	6	7	8	9	10		
0	0 + 0	0 + 1	0 + 2	0 + 3	0 + 4	0 + 5	0 + 6	0 + 7	0 + 8	0 + 9	0 + 10		
Ι	I + 0	+	I + 2	+ 3	+4	+ 5	l + 6	+ 7	+ 8	+ 9	I + I0		
2	2 + 0	2 + 1	2 + 2	2 + 3	2 + 4	2 + 5	2 + 6	2 + 7	2 + 8	2 + 9	2 + 10		
3	3 + 0	3 + 1	3 + 2	3 + 3	3 + 4	3 + 5	3 + 6	3 + 7	3 + 8	3 + 9	3 + 10		
4	4 + 0	4 + 1	4 + 2	4 + 3	4 + 4	4 + 5	4 + 6	4 + 7	4 + 8	4 + 9	4 + 10		
5	5 + 0	5 + 1	5 + 2	5 + 3	5 + 4	5 + 5	5 + 6	5 + 7	5 + 8	5 + 9	5 + 10		
6	6 + 0	6 + 1	6 + 2	6 + 3	6 + 4	6 + 5	6 + 6	6 + 7	6 + 8	6 + 9	6 + 10		
7	7 + 0	7 + I	7 + 2	7 + 3	7 + 4	7 + 5	7 + 6	7 + 7	7 + 8	7 + 9	7 + 10		
8	8 + 0	8 + 1	8 + 2	8 + 3	8 + 4	8 + 5	8 + 6	8 + 7	8 + 8	8 + 9	8 + 10		
9	9 + 0	9 + I	9+2	9 + 3	9 + 4	9 + 5	9 + 6	9 + 7	9 + 8	9 + 9	9 + 10		
10	10 + 0	10 + 1	10 + 2	10 + 3	10 + 4	10 + 5	10 + 6	10 + 7	10 + 8	10 + 9	10 + 10		

We line up the ones;ones plusones. We line up the tens:tens plustens. Theis in the ones column – it represents ones. Theis in the ones column – it representsones. ones plusones is equal toones. Theis in the tens column – it represents tens. Theis in the tens column – it representstens. tens plustens is equal totens. In column addition we start at the right-hand side. Year 3/4	Start with two-digit numbers to exemplify lining up the columns.	Children could draw place value counters.	Start with two-digit numbers to exemplify lining up the columns. 43 + 25 8 (3 +5) 60 (40 + 20) 68 Extend the same method to look at three-digit numbers.
If the column sum is equal to ten or more, we must exchange. Year 3/4	Start with two-digit numbers to exemplify the regrouping. Step 1 Step 2 Step 3 Step 4 Ste	Children could draw place value counters.	Start with two-digit numbers to exemplify the regrouping. 2 5 2 5 $+ 4 7 + 4 7$ $- 2 7 2$ $1 7 2$ 1 567 $+ 233$ $- 800$ $1 1$

If the column sum is equal to ten or more, we must exchange. Year 4	See Year 3/4 examples	See Year 3/4 examples	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
			$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
If the column sum is equal to ten or more, we must exchange. Years 5 and 6	See Year 3 examples	See Year 3/4 examples	As in Year 4 but using numbers with more than 4 digits, adding more than two numbers and adding decimal numbers. 43432 +25648 <u>31234</u> <u>100314</u> 111111

Addition – Key mental strategies for Key Stage 2

EYFS	Number
	 Have a deep understanding of number to 10, including the composition of each number.
	 Subitise (recognise quantities without counting) up to 5.
	• Automatically recall (without reference to rhymes, counting or other aids) number bonds up to 5 (including subtraction facts) and some number bonds to 10,
	including double facts.
	Numerical Patterns
	 Verbally count beyond 20, recognising the pattern of the counting system.
	• Compare quantities up to 10 in different contexts, recognising when one quantity is greater than, less than or the same as the other quantity.
	• Explore and represent patterns within numbers up to 10, including evens and odds, double facts and how quantities can be distributed equally.
Year 1	 read, write and interpret mathematical statements involving subtraction (-) and equals (=) signs
	 represent and use number bonds and related subtraction facts within 20
	 subtract one-digit and two-digit numbers to 20, including zero
	• solve one-step problems that involve subtraction, using concrete objects and pictorial representations, and missing number problems such as 9 = \Box - 7.
Year 2	 solve problems with subtraction:
	 using concrete objects and pictorial representations, including those involving numbers, quantities and measures
	 applying their increasing knowledge of mental and written methods
	 recall and use subtraction facts to 20 fluently, and derive and use related facts up to 100
	 subtract numbers using concrete objects, pictorial representations, and mentally, including:
	 a two-digit number and ones
	• a two-digit number and tens
	• two two-digit numbers
	subtracting three one-digit numbers
	• show that addition of two numbers can be done in any order (commutative) and subtraction of one number from another cannot
	 recognise and use the inverse relationship between addition and subtraction and use this to check calculations and solve missing number problems
<u>Year 3</u>	• subtract numbers mentally, including:
	• a three-digit number and ones
	• a three-digit number and tens
	a three-digit number and hundreds
	• a three-digit number and thousands
	 subtract numbers with up to three digits, using formal written methods of columnar subtraction estimate the ensure to a calculation and use inverse ensertions to shock ensurements
	 estimate the answer to a calculation and use inverse operations to check answers solve problems, including missing number problems, using number facts, place value, and more complex subtraction.
	• solve problems, including missing number problems, using number facts, place value, and more complex subtraction.
<u>Year 4</u>	 subtract with up to 4 digits using the formal written methods of columnar subtraction where appropriate

Subtraction – National Curriculum

	estimate and use inverse operations to check answers to a calculation
	• solve subtraction two-step problems in contexts, deciding which operations and methods to use and why.
Year 5	• subtract whole numbers with more than 4 digits, including using formal written methods (columnar subtraction)
	 subtract numbers mentally with increasingly large numbers
	 use rounding to check answers to calculations and determine, in the context of a problem, levels of accuracy
	 solve subtraction multi-step problems in contexts, deciding which operations and methods to use and why.
Year 6	 solve subtraction multi-step problems in contexts, deciding which operations and methods to use and why

Subtraction

Stem sentences	Concrete (Can we make it?)	Pictorial (Can we draw it?)	Abstract (Can we write the equation?)
is the whole, is a part, is a part.	I have 8 counters. 5 counters are red.	There are 6 children. 2 have their coat	There are 8 flowers. 2 are red and the
	How many are blue?	on. How many do not have their coat on?	rest are yellow. How many are yellow?
= minus and minus = Year R/1			8 8 8 8 - 2 = 6 2 7 2 7
First Then Now	Role play 'getting out of a car'.	First Then Now 4 - 1 = 3	First Then Now
e.g. First there were 4 children in the car, then 1 child got out. Now there are 3 children in the car. Year R/1	First Then Now	3 = 4 - 1	$\frac{4 \qquad -1 \qquad 3}{4-1=3}$
We partition the into and	-4	First there were 12 children on the ride.	-2 -2
First we subtract the from to get to 10.		Then 4 got off. Now there are 8 children	8 9 10 11 12
We know 10 minus is equal to .		on the ride.	12 – 4 =
Year 2	10-2=8	First Then Now	12 - 2 = 10 10 - 2 = 4
There are more than		3	5 red cars
There are fewer than		0 1 2 3 4 5 6 7 8 9 10	
I ne difference between and is		The difference between 4 and 7 is 3.	3 blue cars
Year 2	The difference between 2 and 5 is 3. The difference between 5 and 2 is 3.	The difference between 7 and 4 is 3.	5-3=2

I know that minus is equal to (bridging ten) So tens minus tens is equal to tens. (bridging ten tens) One hundred and minus is equal to	See Year 2 (bridging)		$120^{-} - 30^{-} = 90^{-}$
Year 3		120 - 30 = 120 - 20 = 100 100 - 10 = 90	120 - 30 = 120 - 20 = 100 100 - 10 = 90
I know that minus is equal to (bridging ten) Sotens minustens is equal totens. (bridging ten tens) One hundred andminus is equal to Year 3	126 - 70 = 56	-70	126 - 70 = 56 6 (120 - 50) = 56 126 - 70 = 120 - 70 + 6 = 50 + 6 = 56
We partition theinto and First we subtract the from to get to a multiple of 10. Then we subtract the remaining from the multiple of 10. We know 10 minus is equal to so minus is equal to Year 3		544 - 16 528 530 534 -2 -4 -10	Count back to multiples of 10/100
We partition the into and First we add the to to get to 100. Then we add the remaining to 100. We know 100 plus is equal to Year 3		+3 $+2397 100 123123 - 97 = 26$	Count on to multiples of 10/100

If there is an insufficient number to subtract from in a given column, we must exchange from the column to the left. Year 4	See Year previous examples	See previous examples	$ \begin{array}{c} 5 & 5 & 3 \\ 5 & 5 & 3 \\ \hline & 2 & 7 & 8 & 9 \\ \hline & 3 & 7 & 4 & 9 \\ \hline & \pm & 2 & 9 \\ \hline & \pm & 2 & 9 \\ \hline & \pm & 1 & 8 & 9 & 4 \\ \hline & \pm & 1 & 0 & 5 & 6 \\ \hline \end{array} $
If there is an insufficient number to subtract from in a given column, we must exchange from the column to the left. Years 5 and 6	See Year 3/4 examples	See Year 3/4 examples	As in Year 4 but using numbers with more than 4 digits Using numbers with decimals. Using multiple exchanges across 0. 20008 - 2518 = 17490 1 9 9 2000 10 8 - 2518 1 7 4 9 0

Subtraction – Key mental strategies for Key Stage 2

EYFS	-
Year 1	• solve one-step problems involving multiplication, by calculating the answer using concrete objects, pictorial representations and arrays with the support of
	the teacher.
Year 2	 recall and use multiplication facts for the 2, 5 and 10 multiplication tables, including recognising odd and even numbers
	• calculate mathematical statements for multiplication within the multiplication tables and write them using the multiplication (×) and equals (=)
	signs
	 show that multiplication of two numbers can be done in any order (commutative) and division of one number by another cannot
	 solve problems involving multiplication and division, using materials, arrays, repeated addition, mental methods, and multiplication and
	division facts, including problems in contexts.
Year 3	 recall and use multiplication facts for the 3, 4 and 8 multiplication tables
	• write and calculate mathematical statements for multiplication using the multiplication tables that they know, including for two-digit numbers times one-
	digit numbers, using mental and progressing to written methods
	• solve problems involving missing number problems involving multiplication including positive number scaling problems and correspondence problems where
	n objects are connected to m objects.
Year 4	 recall and use multiplication facts for multiplication tables up to 12 x 12
	 use place value, known and derived facts to multiply mentally, including: x0 x1 and multiplying together three numbers
	 recognise and use factor pairs and commutativity in mental calculations
	 multiply two-digit and three-digit numbers by a one-digit number using formal written layout
	• solve problems involving multiplying, including the distributive law to multiply two-digit numbers by one-digit including positive number scaling problems
	and correspondence problems where n objects are connected to m objects.
Year 5	• identify multiples and factors: all factor pairs of a number, common factors of two numbers, establish whether a number up to 100 is prime and recall prime
	numbers up to 19
	 multiply numbers up to four digits by a one- or two-digit number using a formal written method
	 multiply whole numbers and those involving decimals by 10, 100 and 1000.
Year 6	 identify multi-digit numbers up to 4 digits by a two-digit number using formal, long multiplication
	 identify common factors, common multiples and common prime numbers
	 use their knowledge of the order of operations to carry out calculations involving the four operations

Multiplication – National Curriculum

Multiplication

Stem sentences	Concrete (Can we make it?)	Pictorial (Can we draw it?)	Abstract (Can we write the equation?)
One group of two, two groups of two, three groups of 2		0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	10 20 20
			10, 20, 50,
Ten, twenty, thirty,			
One five, two fives, three fives,	two four six eight ten		
Year R/1	2 4 6 8 10		
There are coins.			
This isp.	00000	$(\cdot)(\cdot)(\cdot)(\cdot)(\cdot)$	Five 2p coins = 10p
Vear 1	Representing each group by one object	0 0 0	
There are in each group.			2 + 2 + 2 + 2 = 8
There are groups. There are in a group and groups.			
		5 5 5	2 X 4 - 0
Year 2			5 + 5 + 5 = 15
			5 x 3 = 15
Factor times factor is equal to the product.		(2) (2) (2)	2 - 2 - 6
Year 2		5 5 5 5	6 = 2 x 3
	Unitising equal groups – representing	$(\vee \vee \vee)$	
	each group by one object		
timescan representin a group and groups.			2 4 5 - 5 4 2
It can also represent groups of		(ΥΥΥΥΥ)	
Multiplication is commutative.		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
Voor 2		\sim	
Teal 2			

All multiples of 100 have both a tens and ones digit of 0. When a number is multiplied by 100, the product is a multiple of 100. Year 4		1,000s 100s 10s 1s 6 6 0 0 100 times the size 100 times 100 times	2 x 100 = 200 There are 100 times as many people as before.
		1,000s 100s 10s 1s 1 5 0 0 100 times the size 100 times the size 100 times	15 x 100 = 1500
If one factor is made ten times the size, the product will be ten times the size.	1 1 1 10 10 10 1 1 1 1 10 10 10 1 1 1 1 10 10 10 10 1 1 1 1 10 10 10 10 10	$2 \times 3 = 6 \\ \times 10 \qquad $	4 x 3 = 12 so 4 x 30 = 120
If there are ten or more ones, we must regroup the ones into tens and ones. If there are ten or more tens, we must regroup the tens into hundreds and tens. Multiplication is distributive. Year 4		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	84 x 6 = 80 x 6 + 4 x 6 = 480 + 24 = 504

We work from the least significant digit, on the right, to the most significant digit, on the left. Multiplication is distributive. Year 4	$ \begin{array}{c} 10 & 10 & 10 & 1 & 1 & 1 & 1 \\ 10 & 10 & 10 & 1 & 1 & 1 & 1 \\ 34 x 2 = 60 + 8 = 68 \end{array} $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
		$\begin{array}{c} & \\ & \\ & 2 & 1 \\ \times & \underline{4} \\ & \underline{8 & 4} \end{array}$
If there are ten or more ones, we must regroup the ones into tens and ones. If there are ten or more tens, we must regroup the tens into hundreds and tens. Multiplication is distributive. Year 4	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
	<-	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

If one factor is made one tenth of the size, the product will be one tenth of the size. If one factor is made one hundredth of the size, the product will be one hundredth of the size. I move the digits of the number I am multiplying places to the left until I get a whole number; then I multiply; then I move the digits of the product places to the right. Year 5	$\begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $	$\begin{array}{c} +4 \\ +4 \\ 0 \\ +4 \\ +4 \\ +4 \\ +4 \\ +4 \\ $	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
Numbers that have more than two factors are composite numbers. Year 5	Factors of 6 are 1, 2, 3 and 6.	1 12 Factor bugs 2 6 3 4	Factors of 6 are 1, 2, 3 and 6.
Numbers that have only two factors are prime numbers. Year 5			17 is a prime number because its only factors are 1 and 17.

To multiply two two-digit numbers, first multiply by the ones, then multiply by the tens, then add them together. To multiply a three-digit number by a two- digit number, first multiply by the ones, then multiply by the tens, then add them together	28 rows	42 × 20 42 × 8	20 rows 8 rows	342 × 28 342 × 20 342 × 8	$ \begin{array}{c cccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
Year 6		42 in each row				1

Multiplication – **Key mental strategies** for Key Stage 2

Strategy	Concrete (Can we make it?)	Pictorial (Can we draw it?)	Abstract (Can we write the equation?)
Adjacent multiples of have a difference of Year 3 onwards			4 x 6 = 4 x 5 + 4 4 x 9 = 4 x 10 - 4
Products in the 10 times table are double the products in the 5 times table. Products in the 5 times table are half of the products in the 10 times table. (NCETM Year 2 unit 2.5) Year 3 onwards	5 5 5 5 5 10 10 10	4 fives 4 fives 0 5 10 15 20 2 tens	5 x 4 = 10 x 2
Products in the 4 times table are double the products in the 2 times table. Products in the 2 times table are half of the products in the 4 times table. Year 3 onwards	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	6 twos $+2 +2 +2 +2 +2 +2 +2$ $0 + 4 + 4 + 4 + 4$ $3 fours$	2 x 6 = 4 x 3
Products in the 8 times table are double the products in the 4 times table. Products in the 4 times table are half of the products in the 8 times table. Year 3 onwards	4 4 4 4 4 4 4 4 4 4 4 4 8 8 8 8 8 4 4 4 4 4 4 8 8 8 8 8	6 fours +4 +4 +4 +4 +4 +4 +4 +4 +4 +4 +4 0 4 8 12 16 20 24 +8 +8 +8 3 eights	4 x 6 = 8 x 3

Products in the 6 times table are double the products in the 3 times table. Products in the 3 times table are half of the products in the 6 times table. Year 3 onwards	3 3 3 3 3 3 6 6 6 6 6 3 3 3 3 3 3 6 6 6 6 6 3 3 3 3 3 3 6 6 6 6 6	4 threes + 3 + 3 + 3 + 3 + 3 + 3 + 3 + 3 0 3 6 9 12 + 6 + 6 2 sixes	3 x 4 = 6 x 2
When both factors are odd, the product is odd. When one factor is odd and the other factor is even, the product is even.	1 × 7 = 7 × 1 = 7 odd odd odd odd odd odd odd odd		odd x odd = odd odd x even = even even x odd = even
(NCETM Year 3 unit 2.9) Year 3 onwards	$2 \times 7 = 14$ $even odd even odd even even even$ $3 \times 7 = 21$ $odd odd odd odd odd odd$ $dd odd odd odd odd$ $dd odd odd odd odd odd$		even x even = even
Products in the 9 times table are triple the products in the 3 times table.	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	12 threes 12 threes 0 3 6 9 12 15 18 21 24 27 30 33 36 4 nines	3 x 12 = 9 x 4

Products in the 10 times table can be used to find products in the 9 times table.		9 x 4 = 10 x 4 - 1 x 4
(NCETM Year 3 unit 2.8) Year 4 onwards		
Products in the 10 times table can be used to find products in the 11 times table and 12 times table. Year 4 onwards	3 30 6	$12 \times 3 = 10 \times 3 + 2 \times 3$ = 30 + 6 = 36

EYFS	-
<u>Year 1</u>	• solve one-step problems involving division, by calculating the answer using concrete objects, pictorial representations and arrays with the support of the
	teacher.
Year 2	 recall and use multiplication and division facts for the 2, 3, 5 and 10 multiplication tables, including recognising odd and even numbers
	 calculate mathematical statements for division within the multiplication tables and write them using the signs ÷ and =
	 show that multiplication of two numbers is commutative but division is not
	 solve problems involving division using materials, arrays, repeated addition, mental methods and division facts, including problems in contexts.
Year 3	 recall and use multiplication and division facts for the 3, 4 and 8 x tables
	 write and calculate mathematical statements for division using the multiplication tables they know, including 2-digit divided by 1-digit using mental and progressing to formal written methods
	• solve problems, involving missing number problems, involving division, including positive number scaling problems and correspondence problems where n
	objects are connected to m objects
	*Non statutory division 2 digit by 1 digit
Year 4	• recall multiplication and division facts up to 12 x 12
	 use place value, known and derived facts to divide mentally, including dividing by 1
	 solve problems involving dividing a three-digit number by one-digit and number using a formal layout
Year 5	• identify multiples and factors, including finding all factor pairs of a number, common factors of two numbers, know and use the vocabulary of prime
	numbers and establish whether a number up to 100 is prime
	 multiply and divide numbers mentally drawing on known facts
	 divide numbers up to 4 digits by a one-digit number using a written method and interpret remainders appropriately for the context
	 divide whole numbers and those involving decimals by 10, 100 and 1000.
Year 6	• divide numbers up to 4 digits by a two-digit number using the formal written method of long division, and interpret remainders as whole number
	remainders, fractions, or by rounding as appropriate for the context.
	• divide numbers up to 4 digits by a two-digit number using the formal written method of short division as appropriate.

Division – National Curriculum

Stem sentences	Concrete (Can we make it?)	Pictorial (Can we draw it?)	Abstract (Can we write the equation?)
One group of two, two groups of two, three groups of 2, Ten, twenty, thirty, One five, two fives, three fives, Year R/1			6 biscuits shared between 2 children gives 3 biscuits each.
The costsp. Each coin has a value ofp. So I need coins. Year 1	Eraser IDP		Five 2p coins = 10p
is divided into groups of There are groups. We can skip count using the divisor to find the quotient. Year 2	IIIII		5 + 5 + 5 = 15 15 ÷ 5 = 3
divided between is equal to each. We can skip count using the divisor to find the quotient. Year 2	Team A Team B	4 fives	One 5 is 1 each. That's 5. Two 5s is 2 each. That's 10. 10 ÷ 5 = 2

Division

Ten times is equal to so divided into groups of ten is If the divisor is, we can use the times table to find the quotient.		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10 x 3 = 30 3 x 10 = 30 30 ÷ 10 = 3
Year 2	30 represents the total number of counters.10 represents the number in each group.3 represents the number of groups.		
is divided into groups of There are groups and a remainder of (NCETM Year 4 unit 2.12) Year 3	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $		14 = 4 x 3 + 2 14 ÷ 4 = 3 r 2
 is a multiple of so when it is divided into groups of, there is no remainder. The remainder is always less than the divisor. (NCETM Year 4 unit 2.12) Year 3 or 4? 		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	 17 ÷ 5 = 2 r 7 is incorrect because 7 is greater than 5. 17 ÷ 5 = 3 r 2
To divide a multiple of ten by 10, remove the zero from the ones place. Year 4	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\downarrow \div 10$ $1,000s 100s 10s 1s$ 9 0 9 0 $\times 10 \times 10 \times 10$ ten times ten times ten times the size the size the size	90 ÷ 10 = 9 150 ÷ 10 = 15

To divide a multiple of 100 by 100, remove two zeros (from the tens and ones places). Year 4	? 100 times as many × 100	↓ ÷ 100 1,000s 100s 10s 1s 9 0 0 9 0 0 0 0 0 9 0 0 0 0 0 9 0 0 0 0 0 0 0 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	900 ÷ 100 = 9
	x 100 = 200 200 ÷ 100 = 10 10 10 10 10 10 100 10 10 10 10 10 10 100		1500 ÷ 100 = 15
If the dividend is made ten times the size, the quotient will be ten times the size. Year 4	8 ÷ 4 = 2	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$12 \div 3 = 4$ $\times 10 \downarrow \qquad $
If dividing the tens gives a remainder of one or more tens, we must exchange the remaining tens for ones. Year 4			8 tens \div 4 $=$ 2 tens 4 ones \div 4 $=$ 1 one 84 \div 4 $=$ 21
	84 ÷ 4 = 21	10 <	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

a substantian in providing on a fit has all vice as an law	Partitioning	Short division		Long division	
counting in multiples of the divisor, or by short division or long division. Year 6	$ \begin{array}{r} 434 \\ 310 \\ 124 \\ 310 \\ 31 \\ 124 \\ 31 \\ 124 \\ 434 \\ 31 \\ 14 \\ 31 \\ 14 \\ 31 \\ 14 \\ 31 \\ 3$	$\begin{array}{cccc} 0 & 1 & 4 \\ 31 \overline{\smash{\big)}} 4 & {}^{4} 3 & {}^{12} 4 \end{array}$	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\frac{4}{4}$ (1ten×31=31tens) $\frac{4}{4}$ (4 ones×31=124 ones) 0	
Where there is a remainder, the result can be expressed as a whole-number quotient with a whole-number remainder, a whole- number quotient with a proper-fraction remainder, or as a decimal-fraction quotient. Year 6	$354 \div 15 = ?$ $2 \ 3 \ r 9$ $15)3 \ 5 \ 4$ $\frac{3 \ 0}{5 \ 4}$ $\frac{4 \ 5}{9}$ So, 354 ÷ 15 = 23 r 9	$2 3$ $15)3 5 4$ $3 0$ $5 4$ $4 5$ 9 $\frac{9}{15} = \frac{3}{5}$ So, $354 \div 15 = 23\frac{3}{5}$	<u>9</u> <u>15</u>	$ \begin{array}{r} 2 & 3 & . 6 \\ 15)3 & 5 & 4 & . 0 \\ 3 & 0 \\ 5 & 4 \\ 4 & 5 \\ 9 & 0 \\ 9 & 0 \\ 9 & 0 \\ 0 \\ 50, 354 \div 15 = 23.6 \end{array} $	