

Mathematics @ Chacewater School

Intent	The national curriculum for mathematics aims to ensure that all pupils: •become fluent in the fundamentals of mathematics •reason mathematically by following a line of enquiry, conjecture relationships and generalisations, and develop an argument, justification or proof using mathematical language \bullet can solve problems by applying their mathematics to a variety of routine and non routine problems. At Chacewater we want all of our children to enjoy mathematics, whilst ensuring that everyone is supported to be able to succeed in the subject and acquire the mathematical skills and knowledge that they need for later life. By lacing calculation, reasoning and problem solving into a series of lessons, we ensure that secure links are made and that prior knowledge is being tested and challenged throughout. Our aspiration is for every child to see themselves as a mathematician - demonstrating a confident attitude towards tackling problems both in and out of the classroom and understanding the importance of maths in the wider world.
Implementation	At Chacewater we follow a mastery led model for the teaching of mathematics. Sequences of learning are built in small sequential steps within our pedagogical approach of 'Teach, Learn, Challenge, Understand'. This 'Maths @ Chacewater' document intends to make clear what each of these stage could look like and how these should be closely related and linked to the five big ideas of fluency, variation, representation \& structure, mathematical thinking and coherence.
Maths is taught daily in the school in all classes, with our sequence of learning being pulled from White Rose maths, which gives a consistent and coherence across the school. However, our expectation is that this is not used as a scheme and only used to help aid the planning process by teachers. Blocks of learning are taught using a linear approach, allowing children to 'linger longer' on core concepts and to develop a depth of understanding within their year group's objectives.	

	A wide range of trusted resources are used to support learning including, Kangaroo Maths, NCETM spine and ready to progress materials, I See Reasoning, I See Problem Solving, Time table Rockstars, Numbots and Testbase. Carefully planned variation builds fluency and understanding of underlying mathematical concepts. Time outside of the maths lesson is dedicated to the revisiting and retrieval of key declarative knowledge and rapid, fluid interventions are put in place to support those children that need it. Each year group focuses on Key Instant Recall Facts (KIRFs) that should be known by the end of each half term - there is a daily focus on these. Planning utilises the idea of small step progression and these are shared with the children so that they can understand the mathematical journey and how it builds. ' S ' planning is utilised to help teachers think about the learning progression for their own class over a week or two week block and learning slides further support this. Ongoing assessment is crucial and is used to adjust and inform planned next steps. Both concrete resources (manipulatives) and pictorial representations are routinely used to support all children, including children with SEND. These are also referenced in our calculation guidance.
Impact	Teachers will continuously formatively assess children's understanding and use this to adjust and inform the next steps in the teaching sequence. This is supported by utilising a range of reasoning and problem-solving activities i.e. Test Base to check children's ability to use and apply the mathematics taught. There is a regular cycle of assessment in place, which includes termly NFER tests in key stage 2 and termly teacher assessment across the school. Wider impact is measured through a triangulated approach. Exploring attitude and confidence with mathematics through pupil conferencing in conjunction with exploring evidence in books. The journey of the mathematics the children are learning should be clear and the children should be able to confidently articulate this.

'L E A P' Into Maths at Chacewater

Local	Where possible we look to link learning to our own school's contextual background. This is includes taking note of children's starting points and prior learning. With this is mind, although we use White Rose to help support and guide our sequence of learning, this is not used as a scheme and the to support this
E ngaging	
	dester
A spiring \& Ambitious	
	The 'challenge' aspect of our pedagogical ap really promote a depth of understanding!
Powerful \& purposeful	

At Chacewater we follow a mastery led model for the teaching of mathematics. Sequences of learning are built in small sequential steps within our pedagogical approach of 'Teach, Challenge, Learn, Understand'. This 'Maths @ Chacewater' document intends to make clear what each of these stage could look like and how these should be closely related and linked to the five big ideas fluency, variation, representation \& structure, mathematical thinking and coherence.

Our aim is that children work broadly at the same pace, focusing on increasing a depth of understanding rather than a focus on progressing beyond ARE. Rapid interventions should be in place for children that need to consolidate their understanding before moving on.

Typical Lesson Design

PRE-LESSON (MORNING WORK) MASTERING NUMBER ETC
KIRFS FLUENCY DECLARATIVE KNOWLEDGE

TEACH (Ready to Learn)
\checkmark Retrieval - question (s) based on previous lesson/s and assessment
\qquad Low Stakes Quizzes Used to assess security and determine starting points
\checkmark Building Automaticity
\checkmark Representation and Structure used to scaffold learning
\checkmark Guided Practice and Direct Instruction

LEARN (Learning Together)
\checkmark Representation and Structure used to scaffold learning
\checkmark Effective Questioning to promote thinking
\checkmark Independent Activity/Learning - carefully chosen variation

CHALLENGE

\checkmark Reasoning and Problem Solving (modelled at first)
\checkmark Progression in questioning
\checkmark Conjecturing and testing.

UNDERSTAND (Assessment)

\checkmark Application of learning in a different context e.g. Testbase
\checkmark Live marking and immediate feedback
\checkmark Low Stakes Quizzes to check understanding

TEACH
Retrieval
Fluency

The National Curriculum states that children should become fluent in the fundamentals of mathematics through varied and frequent practice, and this is the main aim of our 'Teach' phase. While a part of this is about knowing key mathematical facts and recalling them efficiently, the ability to be fluent in maths gives pupils the resilience and understanding to delve deeper into all areas of mathematical learning. Regular development will allow them to build a stronger number sense and choose the most appropriate method for the task at hand. This will enable them to be better equipped to grapple with many variations of mathematical concepts and problems.

- Concrete resources are routinely used to support learning. These are used by all children and help children to understand the underlying structure of the maths being taught. Key resources include PV counters, dienes (base 10), PV grids, numicon and hundred squares.
- Side by side modelling of the concrete, pictorial and abstract is crucial at this stage.

LEARN

Guided
Practice

- use of variation to help scaffold and draw links in learning. Deliberate choice of question and thinking about what we want to draw attention to.
- choice of the most efficient calculation strategy i.e. mental or written

Independent
Practice
At this stage children should be given an opportunity to build learning and the use of carefully structured questions should be in place, including:

- pattern seeking
- continued support with concrete and pictorial, moving to the abstract.
Variation-drawing
attention to relationships.

Exploring mathematics - identifying structure.

$120-90$ $430-30=$ $122-92$ $430-40=$ $119-89$ $430-50=$ $235-180$ $520-30=$ $237-182$ $520-31=$ $502-397$ $520-29=$ $3+6=$ $30+60=$ $300+600=$ $\frac{1}{4}$ of $12=?$ $\frac{1}{4}$ of $120=?$ $\frac{1}{4}$ of $1200=?$ $\frac{3}{4}$ of $12=?$	$\frac{3}{4}$ of $1200=?$

Write down the four relationships you can see in the bar model.

CHALLENGE

Reasoning \&
 Problem
 Solving

In order to ensure deep understanding, challenge elements will be incorporated in to the teaching sequence. The challenge could be a 'twist' or a 'confuse' question within the lesson or an activity within the books. Such activities allow the children to demonstrate their knowledge in a different way and thus provides depth of understanding. These can be written or through verbal discussion and applies to all year groups. Reasoning and Problem Solving should flow through all of our maths lessons and not reserved purely as extension activities. In all cases it is crucial that there is explicit teaching and modelling of how to tackle such problems.

Examples below include opportunities to develop efficiency, conjecture and solve missing digit problems.

It is crucial that all children have the opportunity to apply their mathematical knowledge in a variety of different contexts and can actively problem solve. This includes being able to solve single and multi-step problems, relevant to age and stage. We use Testbase as resources to find a range of different problems and the expectation is that children are explicitly taught how to solve these. Such problems may at times draw in other areas of previous learning to aid the problem solving process.

There are 20 balloons.

How many balloons are left?

Look at these coins:

What is the largest amount you can make using three of these coins?

A shopkeeper has 20 fish and 5 fish bowls.
He puts the same number of fish in each bowl. How many fish go in each bowl?

The list below shows the years in which the Cricket World Cup was held since 1992:
1992, 1996, 1999, 2003, 2007, 2011, 2015

Kristy you 12 vineospapos.
absocu 25 butae ope

Adam says,

Adam is not correct. Explain how you know.

Only fraction of each line is shown. The rest is hidden behind the blue screen.
Which whole line is the longer?

She has 24 dominoes in her her domino pieces but she does not thinktit is Which of her domino pieces are missing?

Sequences of Learning

At Chacewater School we use White Rose maths as the golden thread to our curriculum which guides our sequences of learning and ensures curriculum coverage, however we do not use this as a scheme. Teachers start with the White Rose sequence but then adapt this to best fit the needs of the children in their class. This means that the time spent on different domains will differ from year to year depending on children's progression and understanding.

S planning is used to make and show this adaptation. This means that deliberate choices are made with regard to small steps of progression that need to be worked on to ensure a depth of understanding.

Examples of S Planning - identifying small steps progression.

Sequences of Learning

Reception (For full details see separate EYFS maths document)

Long Term Plan:	Autumn 1	Autumn 2	Spring 1	Spring 2	Summer 1	Summer 2
EYFS Links to	Number	Number patterns and Shape, Space and Measure	Number	Number	Shape, Space and Measure	Number patterns and Shape, Space and Measure
EYFS Framework and supported by Development Matters strands	Fast recognition of up to 3 objects, without having to count them individually ('subitising'). Recite numbers past 5. Say one number for each item in order: 1,2,3,4,5.	Know that the last number reached when counting a small set of objects tells you how many there are in total ('cardinal principle'). Show 'finger numbers' up to 5 . Link numerals and amounts: for example, showing the right number of objects to match the numeral, up to 5 . Experiment with their own symbols and marks as well as numerals. Solve real world mathematical	Continue, copy and create repeating patterns.	Explore the composition of numbers to 10. Automatically recall number bonds for numbers 0-10.	Talk about and explore 2D and 3D shapes (for example, circles, rectangles, triangles and cuboids) using informal and mathematical language: 'sides', 'corners'; 'straight', 'flat', 'round'. Select, rotate and manipulate shapes in order to develop spatial reasoning skills. Compose and decompose shapes so that children recognise a shape can have other shapes within it, just as numbers can.	Count beyond ten. Compare numbers. Verbally count beyond 20, recognising the pattern of the counting system. Compare quantities up to 10 in different contexts, recognising when one quantity is greater than, less than or the same as the other quantity.

		problems with numbers up to 5.				
Mastering Number focus	Subitising Composition Counting, cardinality and ordinality Subitising	Composition Counting, ordinality and cardinality Composition $\times 3$ weeks Counting, ordinality and cardinality	Subitising Counting, cardinality and ordinality Composition x 3	Counting, ordinality and cardinality Composition x 4 weeks	Counting, ordinality and cardinality Subitising Composition $\times 3$ weeks	Recap composition, counting, and counting patterns.
White Rose planning to support Number units (if needed) Not to be taught explicitly.	Getting to know you (first 2 weeks) Early number to 3. Teaching to 5 1,2,3,4,5		Alive in 5 Moving onto 6,7,8	Building 9 and 10 Sharing and grouping		To 20 and beyond
White Rose Focus to support Shape Space and Measure Units (if needed)		Match sort and compare Patterns Visualise build and map (patterns)			Shapes- triangles and circles Shapes with 4 sides Learning 3D shapes Manipulate, compose	Mass and capacity Length height and time

$\left.\begin{array}{|l|l}\hline \begin{array}{l}\text { Declarative } \\ \text { Knowledge Facts to } \\ \text { be learnt }\end{array} & \begin{array}{l}\text { Place Value } \\ \text { Children begin using numbers and counting up to } 5 . \\ \text { Children begin using numbers and counting up to } 10 . \\ \text { Comparing number } \\ \text { Children compare quantities of identical objects and non-identical objects. } \\ \text { Children compare groups of objects and numbers up to 10. }\end{array} \\ \text { Identifying, Representing and Estimating Number } \\ \text { Children are introduced to doubling, halving and sharing numbers and objects within numerical patterns. } \\ \text { Children learn which numbers are odd and which numbers are even as well as understanding why } \\ \text { Number bonds } \\ \text { Children find changes within } 5 . \\ \text { Children combine two groups to find the whole amount. } \\ \text { Children are introduced to the part whole model and learning how to use it with numbers up to } 10 . \\ \text { Mental Calculation } \\ \text { Children find one more and one less. } \\ \text { Children learn how to add by counting on. } \\ \text { Children learn how to take away by counting back. } \\ \text { Measurement } \\ \text { Children are introduced to length, height, distance, weight, volume and capacity using numbers, objects and practical exploration. } \\ \text { Geometry } \\ \text { Children are introduced to 2D shapes and } 3 \mathrm{D} \text { shapes learning their names and recognising them. } \\ \text { Children begin making simple patterns then once confident, explore more complex patterns. }\end{array}\right\}$

ELG Number=

Children at the expected level of development will:

- Have a deep understanding of number to 10 , including the composition of each number;
- Subitise (recognise quantities without counting) up to 5;
- Automatically recall (without reference to rhymes, counting or other aids) number bonds up to 5 (including subtraction facts) and some number bonds to 10 , including double facts.

ELG Numerical Patterns=

Children at the expected level of development will:

- Verbally count beyond 20, recognising the pattern of the counting system;
- Compare quantities up to 10 in different contexts, recognising when one quantity is greater than, less than or the same as the other quantity;
- Explore and represent patterns within numbers up to 10 , including evens and odds, double facts and how quantities can be distributed equally.

	given a number, identify one more and one less \checkmark use the language of: equal to, more than, less than (fewer), most, least $\checkmark \quad$ identify and represent numbers using objects and pictorial representations including the number line $\checkmark \quad$ read and write numbers from 1 to 20 in numerals and words.	$\checkmark \quad$ solve one-step problems that involve addition and subtraction, using concrete objects and pictorial representations, and missing number problems such as $\checkmark \quad 7=\square-9$	rectangles (including squares), circles and triangles] 3-D shapes [e.g. cuboids (including cubes), pyramids and spheres].	count, read and write numbers to 100 in numerals; count in multiples of twos, fives and tens given a number, identify one more and one less use the language of: equal to, more than, less than (fewer), most, least identify and represent numbers using objects and pictorial representations including the number line \checkmark read and write numbers from 1 to 20 in numerals and words.

Year 2 - Summer Term											
Week	$1{ }^{1}$	3	4	5	6	7	8	9	10	11	12
KIRF	Know all addition and subtraction facts for multiples of 10 to 100.					Know multiplication and division facts for 5 x table.					
	Length \& Height	Position \& Direction		Problem Solving		Time		Mass, capacity and temperature			Consolidation
Suggested Sequence	- Measure length (cm) - Measure length (m) - Compare lengths - Order lengths - Four operations with lengths - Problem solving with lengths	- Problem solving with position - Describe movement - Describe turns - Describe movements and turns - Make patterns with shapes		Consolidation period		- O'clock and half past - Quarter past and quarter to - Telling time to 5 mins - Hours and days - Find durations of time - Compare durations of time		- Compare mass - Measure mass in grams - Measure mass in kg - Compare volume - Explore Millilitres - Explore Litres - Four operations with mass - Four operations with volume - Explore temperature			
End Point (NCETM Progression)	\checkmark compare and order lengths and record the results using >, < and = $\checkmark \quad$ choose and use appropriate standard units to estimate and measure length/height in any direction (m / cm); appropriate unit, using rulers.		use mathematical vocabulary to describe position, direction and movement including movement in a straight line and distinguishing between rotation as a turn and in terms of right angles for quarter, half and three-quarter turns (clockwise and anti-clockwise)				tell and write the time to five minutes, including quarter past/to the hour and draw the hands on a clock face to show these times. know the number of minutes in an hour and the number of hours in a day. know the number of minutes in an hour and the number of hours in a day.		compare and volume/cap results using choose and standard unit measure mas temperature (litres/ml) to appropriate scales, therm measuring v	ass, ecord the priate ate and acity st rulers, and	

Year 3 - Autumn Term									
Week	1 2 3	$4{ }^{4} 5$	6	7	8	9	10	11	12
KIRF	Know all the number bonds for each number to 20 e.g. $13+6=19$				Know multiplication and division facts for $2 \mathrm{x}, 4 \mathrm{x}$ and 8x table.				
	Place Value	Addition \& Subtraction				Multiplication \& Division			
Suggested Sequence	- Explore hundreds - Numbers to 1000 - Represent on a PV grid - $100 \mathrm{~s}, 10 \mathrm{~s}$ and 1 s - Number lines to 1000 - Find 1,10 and 100 more or less - Compare objects - Compare numbers - Order numbers - Count in 50s	- Add and subtract multiples of 100 - Add and subtract 3-digit and 1-digit numbers - not crossing 10 - Add 3-digit and 1-digit numbers - crossing 10 - Subtract a 1-digit number from a 3-digit number - crossing 10 - Add and subtract 3-digit and 2-digit numbers - not crossing 100 - Add 3-digit and 2-digit numbers - crossing 100 - Subtract a 2-digit number from a 3-digit number - crossing 100 - Add and subtract 100 s - Pattern spotting - Mixed addition and subtraction problems - Add and subtract 2-digit and 3-digit numbers - not crossing 10 or 100 - Add two 3-digit numbers - not crossing 10 or 100 - Add two 3-digit numbers - crossing 10 or 100 - Subtract a 3-digit number from a 3-digit number - no exchange - Subtract a 3-digit number from a 3-digit number - exchange - Estimate answers to calculations - Check answers				- Multiplication - equal groups - Multiply by 3 - Divide by 3 - The 3 times-table - Multiply by 4 - Divide by 4 - The 4 times-table - Multiply by 8 - Divide by 8 - The 8 times-table			
End Point (NCETM Progression)	count from 0 in multiples of 4,8 , 50 and 100 find 10 or 100 more or less than a given number compare and order numbers up to 1000 identify, represent and estimate numbers using different representations	add and subtract numbers mentally, including: a three-digit number and ones - a three-digit number and tens - a three-digit number and hundreds \checkmark add and subtract numbers with up to three digits, using formal written methods of columnar addition and subtraction \checkmark estimate the answer to a calculation and use inverse operations to check answers				\checkmark count from 0 in multiples of $4,8,50$ and 100 $\checkmark \quad$ recall and use multiplication and division facts for the 3,4 and 8 multiplication tables write and calculate mathematical statements for multiplication and division using the multiplication tables that they know, including for two-digit numbers times one-digit numbers, using mental and progressing to formal written methods			

	division using the multiplication tables that they know, including for two-digit numbers times onedigit numbers, using mental and progressing to formal written methods estimate the answer to a calculation and use inverse operations to check answers solve problems, including missing number problems, involving multiplication and division, including positive integer scaling problems and correspondence problems in which n objects are connected to m objects				- digit numbers or quantities by 10 . recognise and use fractions as numbers: unit fractions and nonunit fractions with small denominators \checkmark compare and order unit fractions, and fractions with the same denominators \checkmark recognise and show, using diagrams, equivalent fractions with small denominators add and subtract fractions with the same denominator within one whole (e.g. ${ }^{5} / 7+1 / 7={ }^{6} / 7$)

| \checkmark | compare and order unit fractions,
 and fractions with the same
 denominators | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| \checkmark | recognise and show, using
 diagrams, equivalent fractions
 with small denominators
 add and subtract fractions with
 the same denominator within one
 whole (e.g. $5 / 7{ }^{1} / 7{ }^{\prime}=6 / 7$ | half-turn, three
 make three quarters
 of a turn and four a
 complete turn;
 identify whether
 angles are greater
 than or less than a
 right angle
 identify horizontal
 and vertical lines
 and pairs of
 perpendicular and
 parallel lines | |

	identify, represent and estimate numbers using different representations read Roman numerals to 100 (I to C) and know that over time, the numeral system changed to include the concept of zero and place value. recognise the place value of each digit in a fourdigit number (thousands, hundreds, tens, and ones) find the effect of dividing a one- or two-digit number by 10 and 100 , identifying the value of the digits in the answer as units, tenths and hundredths round any number to the nearest 10,100 or 1 000 \checkmark solve number and practical problems that involve all of the above and with increasingly large positive numbers		solve addition and subtraction two-step problems in contexts, deciding which operations and methods to use and why		find the area of rectilinear shapes by counting squares convert between different units of measure (e.g. kilometre to metre; hour to minute)		divide mentally, including: multiplying by 0 and 1 ; dividing by 1 ; multiplying together three numbers recognise and use factor pairs and commutativity in mental calculations multiply two-digit and three-digit numbers by a one-digit number using formal written layout recognise and use factor pairs and commutativity in mental calculations estimate and use inverse operations to check answers to a calculation solve problems involving multiplying and adding, including using the distributive law to multiply two-digit numbers by one digit, integer scaling problems and harder correspondence problems such as n objects are connected to m objects

Year 4- Summer Term							
Week	$1{ }^{1}$	3 4	5 F	7	8 9 10	11	12
KIRF							
	Decimals	Money	Time	Statistics	Shape	Position \& Direction	Consolidation
Suggested Sequence	- Make a whole - Write decimals - Compare decimals - Order decimals - Round decimals - Halves and quarters	- Pounds and pence - Ordering money - Estimating money - Working with money - Four operations involving money	- Hour, minutes and seconds - Years, months, weeks and days - Analogue to digital 12 hour 24 hour	- Interpret charts - Comparison, sum and difference - Line graphs	- Identify angles - Compare and order angles - Explore triangles - Explore quadrilaterals - Symmetry - Lines of symmetry - Draw lines of symmetry	- Describe position - Draw on a grid - Move on a grid - Describe movement	
End Point (NCETM Progression)	$\left.\checkmark \begin{array}{l}\text { compare numbers } \\ \text { with the same } \\ \text { number of decimal } \\ \text { places up to two } \\ \text { decimal places } \\ \checkmark \\ \text { round decimals } \\ \text { with one decimal } \\ \text { place to the } \\ \text { nearest whole } \\ \text { number } \\ \checkmark \\ \text { recognise and } \\ \text { write decimal } \\ \text { equivalents of any } \\ \text { number of tenths }\end{array}\right\}$or hundredths recognise and write decimal	\checkmark estimate, compare and calculate different measures, including money in pounds and pence	\checkmark read, write and convert time between analogue and digital 12 and 24-hour clocks read, write and convert time between analogue and digital 12 and 24-hour clocks solve problems involving converting from hours to minutes; minutes to seconds; years to months; weeks to days	\checkmark interpret and present discrete and continuous data using appropriate graphical methods, including bar charts and time graphs \checkmark solve comparison, sum and difference problems using information	$\checkmark \quad$ identify lines of symmetry in 2-D shapes presented in different orientations \checkmark complete a simple symmetric figure with respect to a specific line of symmetry $\checkmark \quad$ compare and classify geometric shapes, including quadrilaterals and triangles, based on their properties and sizes \checkmark identify acute and obtuse angles and compare and order angles up to two right angles by size	\checkmark describe positions on a $\checkmark \quad$ 2-D grid as coordinates in the first quadrant describe movements between positions as translations of a given unit to the left/right and up/down \checkmark plot specified	

	equivalents to ${ }^{1} /{ }_{4}$; ${ }^{1} /{ }_{2} ;{ }^{3} / 4$ find the effect of dividing a one- or two-digit number by 10 and 100 , identifying the value of the digits in the answer as ones, tenths and hundredths solve simple measure and money problems involving fractions and decimals to two decimal places.			presented in bar charts, pictograms, tables and other graphs.		points and draw sides to complete a given polygon	

	read, write, order and compare numbers to at least 1000000 and determine the value of each digit read Roman numerals to 1000 M) and recognise years written in Roman numerals. read, write, order and compare numbers to at least 1000000 and determine the value of each digit round any number up to 1000000 to the nearest $10,100,1000,10$ 000 and 100000	addition and subtraction) use rounding to check answers to calculations and determine, in the context of a problem, levels of accuracy $\checkmark \quad$ solve addition and subtraction multistep problems in contexts, deciding which operations and methods to use and why		long multiplication for two-digit numbers divide numbers up to 4 digits by a one-digit number using the formal written method of short division and interpret remainders appropriately for the context identify multiples and factors, including finding all factor pairs of a number, and common factors of two numbers. know and use the vocabulary of prime numbers, prime factors and composite (non-prime) numbers establish whether a number up to 100 is prime and recall prime numbers up to 19 recognise and use square numbers and cube numbers, and the notation for squared (${ }^{2}$) and cubed (${ }^{3}$) solve problems involving multiplication and division including using their knowledge of factors and multiples, squares and cubes solve problems involving addition, subtraction, multiplication and division and a combination of these, including understanding the meaning of the equals sign solve problems involving multiplication and division, including scaling by simple fractions and problems involving simple rates	(also included in measuring) measure and calculate the perimeter of composite rectilinear shapes in centimetres and metres calculate and compare the area of squares and rectangles including using standard units, square centimetres (cm^{2}) and square metres (m^{2}) and estimate the area of irregular shapes

$\checkmark \quad$ multiply and divide numbers mentally drawing upon known facts
$\checkmark \quad$ multiply and divide whole numbers and those involving decimals by 10, 100 and 1000
$\checkmark \quad$ multiply numbers up to 4 digits by a one- or two-digit number using a formal written method, including long multiplication for two-digit numbers
$\checkmark \quad$ divide numbers up to 4 digits by a one-digit number using the formal written method of short division and interpret remainders appropriately for the context
\checkmark identify multiples and factors, including finding all factor pairs of a number, and common factors of two numbers.
$\checkmark \quad$ know and use the vocabulary of prime numbers, prime factors and composite (non-prime) numbers
\checkmark establish whether a number up to 100 is prime and recall prime numbers up to 19
$\checkmark \quad$ recognise and use square numbers and cube numbers, and the
notation for squared (${ }^{2}$) and cubed $\left(^{3}\right)$
$\checkmark \quad$ solve problems involving multiplication and division including using their knowledge of factors and multiples, squares and cubes
$\checkmark \quad$ identify, name and write equivalent fractions of a given fraction, represented visually, including tenths and hundredths
$\checkmark \quad$ read and write decimal numbers as fractions (e.g. $0.71={ }^{71} /{ }_{100}$)
$\checkmark \quad$ add and subtract fractions with the same denominator and multiples of the same number
$\checkmark \quad$ recognise mixed numbers and improper fractions and convert from one form to the other and write mathematical statements >1 as a mixed number (e.g. ${ }^{2} /{ }_{5}+4 / 5=6 / 5=1 / 5$)
$\checkmark \quad$ multiply proper fractions and mixed numbers by whole numbers, supported by materials and diagrams
and decimal equivalents
$\checkmark \quad$ read and write decimal numbers as fractions (e.g. 0.71 = $71 /{ }_{100}$)
$\checkmark \quad$ recognise the per cent symbol (\%) and understand that per cent relates to "number of parts per hundred", and write percentages as a fraction with denominator 100 as a decimal fraction
\checkmark solve problems involving numbers up to three decimal places
$\checkmark \quad$ solve problems which require knowing percentage and decimal equivalents of ${ }^{1} / 2^{\prime}$ $1 / 4^{\prime}, 1 / 5^{\prime}, 2,5_{5}, 4$ and those with a denominator of a multiple of 10 or 25 .

| \checkmark | solve problems involving addition,
 subtraction, multiplication and
 division and a combination of
 these, including understanding the
 meaning of the equals sign | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| \checkmarksolve problems involving
 multiplication and division,
 including scaling by simple
 fractions and problems involving
 simple rates | | | |

		- Divide decimals by 10,100 and 1000 recognise and use thousandths and relate them to tenths, hundredths and decimal equivalents \checkmark read and write decimal numbers as fractions (e.g. $0.71={ }^{71} /{ }_{100}$) recognise the per cent symbol (\%) and understand that per cent relates to "number of parts per hundred", and write percentages as a fraction with denominator 100 as a decimal fraction solve problems involving numbers up to three decimal places solve problems which require knowing percentage and decimal equivalents of ${ }^{1} / 2^{\prime}{ }^{1} / 4^{\prime}{ }^{1} / 5_{5^{\prime}}{ }^{2} / 5_{5^{\prime}}{ }^{4} /{ }_{5}$ and those with a denominator of a multiple of 10 or 25 .							
End Point (NCETM Progression)				identify 3-D shapes, including cubes and other cuboids, from 2-D representations draw given angles, and measure them in degrees (${ }^{\circ}$) use the properties of rectangles to deduce related facts and find missing lengths and angles distinguish between regular and irregular polygons based on reasoning about equal sides and angles know angles are measured in degrees: estimate and compare acute, obtuse and reflex angles identify: angles at a point and one whole turn (total 360°) angles at a point on a straight line and $1 / 2$ a turn (total 180°) - other multiples of 90°	\checkmark	identify, describe and represent the position of a shape following a reflection or translation, using the appropriate language, and know that the shape has not changed		convert between different units of metric measure (e.g. kilometre and metre; centimetre and metre; centimetre and millimetre; gram and kilogram; litre and millilitre) solve problems involving converting between units of time understand and use equivalences between metric units and common imperial units such as inches, pounds and pints	\checkmark estimate volume (e.g. using m^{3} blocks to build cubes and cuboids) and capacity (e.g. using water) use all four operations to solve problems involving measure (e.g. length, mass, volume, money) using decimal notation including scaling.

Year 6 - Autumn Term																			
Week		1	2	3			4	5	6	7		8			9	10	11		
KIRF	Know all previous learnt number bonds (including decimals)										Derive multiplication and division facts using decimal numbers e.g. $8 \times 7=56$ so$8 \times 0.7=5.6$								
	Place Value			Four Operations								Fractions						Position	
Suggested Sequence	- Numbers to 10 million - Compare and order any numbers - Round any number - Negative numbers			- Add and subtract integers - Multiply up to a 4-digit number by a 2-digit number - Short division - Division using factors - Long division - Common factors - Common multiples - Primes to 100 - Squares and cubes - Order of operations - Mental calculations and estimation - Reason from known facts								- Simplify fractions - Fractions on a number line - Compare and order Denominator Numerator - Add and subtract fractions - Mixed addition and subtraction - Multiply fractions by integers - Multiply fractions by fractions - Divide fractions by integers - Four rules with fractions - Fractions of an amount - Fractions of an amount - find the whole						- $1^{\text {st }} q u a d r a n t$ - 4 quadrants - Translations - Reflections	
End Point (NCETM Progression)		\%	use negative numbers in context, and calculate intervals across zero read, write, order and compare numbers up to 10000000 and determine the value of each digit identify the value of each digit to three decimal	perform mental calculations, including with mixed operations and large numbers use their knowledge of the order of operations to carry out calculations involving the four operations use estimation to check answers to calculations and determine, in the context of a problem, levels of accuracy. solve addition and subtraction multi-step problems in contexts, deciding which operations and methods to use and why Solve problems involving addition, subtraction, multiplication and division perform mental calculations, including with mixed operations and large numbers								compare and order fractions, including fractions >1 use common factors to simplify fractions; use common multiples to express fractions in the same denomination recall and use equivalences between simple fractions, decimals and percentages, including in different contexts. add and subtract fractions with different denominators and mixed numbers, using the concept of equivalent fractions							\checkmark describe positions on the full coordinate grid (all four quadrants) draw and translate simple shapes on the coordinate plane, and

Year 6 - Spring Term							
Week	$1{ }^{1}$	$3 \mathrm{l\mid l}$	5 6	7	8	$10 \quad 11$	12
KIRF	Know the doubles and halves of all two digit decimals.				Know all the square numbers to 12×12.		
	Decimals	Percentages	Algebra	Comparing Units	Perimeter, Area \& Volume	Ratio	Consolidation
Suggested Sequence	- Three decimal places - Multiply by 10 , 100 and 1000 - Divide by 10, 100 and 1000 - Multiply decimals by integers	- Fractions to percentages - Equivalent FDP - Order FDP - Percentage of an amount - Percentages missing values	- Find a rule - one step - Find a rule - two step - Forming expressions - Substitution - Formulae - Forming equations	- Metric measures - Convert metric measures - Calculate with metric measures - Miles and kilometres	- Shapes - same area - Investigate area and perimeter - Area of a triangle - Area of a parallelogram - Volume - counting cubes	- Use ratio language - Ratio and fractions - Introducing the ratio symbol - Calculating ratio - Using scale factors - Ratio and proportion problems	

	- Divide decimals by integers - Division to solve problems - Decimals as fractions - Fraction to decimals		- Solve simple onestep equations - Solve two-step equations - Find pairs of values	- Imperial measures	- Volume of a cuboid		
End Point (NCETM Progression)	$\checkmark \quad$ identify the value of each digit in numbers given to three decimal places \checkmark solve problems which require answers to be rounded to specified degrees of accuracy associate a fraction with division and calculate decimal fraction equivalents (e.g. 0.375) for a simple fraction (e.g. ${ }^{3} / 8$) recall and use equivalences between simple fractions, decimals and percentages, including in different contexts. multiply one-digit numbers with up	$\checkmark \quad$ recall and use equivalences between simple fractions, decimals and percentages, including in different contexts. \checkmark associate a fraction with division and calculate decimal fraction equivalents (e.g. 0.375) for a simple fraction (e.g. ${ }^{3 / 8}$)	$\checkmark \quad$ express missing number problems algebraically \checkmark find pairs of numbers that satisfy number sentences involving two unknowns \checkmark enumerate all possibilities of combinations of two variables \checkmark use simple formulae \checkmark generate and describe linear number sequences	\checkmark solve problems involving the calculation and conversion of units of measure, using decimal notation up to three decimal places where appropriate use, read, write and convert between standard units, converting measurements of length, mass, volume and time from a smaller unit of measure to a larger unit, and vice versa,	\checkmark calculate, estimate and compare volume of cubes and cuboids using standard units, including centimetre cubed $\left(\mathrm{cm}^{3}\right)$ and cubic metres $\left(m^{3}\right)$, and extending to other units such as mm^{3} and km^{3}. recognise that shapes with the same areas can have different perimeters and vice versa $\checkmark \quad$ calculate the area of parallelograms and triangles \checkmark calculate, estimate and compare volume of cubes and cuboids using standard units, including cubic	\checkmark solve problems involving the relative sizes of two quantities where missing values can be found by using integer multiplication and division facts \checkmark solve problems involving the calculation of percentages [for example, of measures, and such as 15% of 360] and the use of percentages for comparison \checkmark solve problems involving similar shapes where the scale factor is known or can be found solve problems involving unequal	

	to two decimal places by whole numbers \checkmark multiply one-digit numbers with up to two decimal places by whole numbers \checkmark multiply and divide numbers by 10 , 100 and 1000 where the answers are up to three decimal places $\checkmark \quad$ identify the value of each digit to three decimal places and multiply and divide numbers by 10 , 100 \checkmark and 1000 where the answers are up to three decimal places $\checkmark \quad$ associate a fraction with division and calculate decimal fraction equivalents (e.g. 0.375) for a simple fraction (e.g. ${ }^{3} / 8$) use written division methods in cases where the			using decimal notation to up to three decimal places convert between miles and kilometres	centimetres (cm^{3}) and cubic metres (m), and extending to other units [e.g. mm^{3} and km^{3}]. \checkmark recognise when it is possible to use formulae for area and volume of shapes	sharing and grouping using knowledge of fractions and multiples.	

| | | \checkmarkrecognise angles where they meet
 at a point, are on a straight line, or
 are vertically opposite, and find
 missing angles |
| :--- | :--- | :--- | :--- |

Key Instant Recall Facts (KIRFs) at Chacewater

The table below outlines KIRFs that should be learnt with regular daily practice, in addition to the normal maths lesson. Often this may be part of the routine first thing in the morning. Times Tables Expectations in red and there should be daily practice ongoing of these.

	R	Y1	Y2	Y3	Y4	Y5	Y6
Autumn 1	Know and say the numbers from 0 to 5 and back from 5 to 0 .	Know all number bonds for 5.	Know all number bonds for 10 and 20.	Know all the number bonds for each number to 20 e.g. $13+6=19$	Know all number bonds for 100.	Know all decimals that total 1 or 10 (decimal place) e.g. $0.3+0.7=1$ and $6.2+3.8=10$.	Know all previous learnt number bonds (including decimals)
Autumn 2	Know and say the numbers from 0 to 10 and back from 10 to 0 .	Know all number bonds for 10.	Know multiplication and division facts for 2 x table.	Know multiplication and division facts for $2 x, 4 x$ and $8 x$ table.	Know multiplication and division facts for 7x table.	Consolidate all multiplication and division facts for all tables.	Derive multiplication and division facts using decimal numbers e.g. 8 $\mathrm{x} 7=56$ so $8 \times 0.7=5.6$.
Spring 1	Know how to partition numbers to 5 into two groups.	Know all number bonds for 20.	Know multiplication and division facts for 10x table.	Know doubles and halves of all whole numbers to 20. e.g. 12 doubled is 24 and 12 halved is 6 .	Know multiplication and division fact for 11x and $12 x$ table.	Know the doubles and halves of all two digit numbers.	Know the doubles and halves of all two digit decimals.
Spring 2	Know how to partition numbers to 10 into two groups.	Know all doubles and halves of even number to 20.	Know the halves of $1,3,5,7,9$ e.g. half of 3 is $11 / 2$	Know all number bonds for100 using multiples of 5 .	Know all pairs of multiples of 50 with a total of 1000 e.g. $350+$ $650=1000$.	Know the prime numbers up to 100.	Know all the square numbers to 12×12.
Summer 1	Be able to read and write numbers to 20.	Know all addition and subtraction facts for all numbers between 0 and 10.	Know all addition and subtraction facts for multiples of 10 to 100.	Know all multiplication and division facts for the 3,6 and 9 times tables.	Know the decimal equivalents of the fractions $1 / 2,1 / 4,3 / 4,1 / 3,2 / 3$, $1 / 10$ and $1 / 5$.	Know all pairs of factors of numbers up to 100.	Know the square roots of all numbers to 15 x 15.
Summer 2	Be able to add and subtract single digit numbers by counting on or back.	Count forwards and backwards in steps of 2,5 and 10.	Know multiplication and division facts for 5 x table.	Know all multiplication and division facts for $2 x, 5 x$ and $10 x$ table. (instant recall)	Know all number bonds for $£ 1$ using decimal notation.	Know the decimal and percentage equivalents of $1 / 2,1 / 4,3 / 4,1 / 3,2 / 3,1 / 10$ and $1 / 5$.	Find a percentage of an amount and reduce by a percentage.
End of year		By the end of Y2, through children should be achie known number facts. See	regular daily practice, all ing automaticity with table below.		All multiplication facts. Making use of the 21 facts and commutativity.		

Number Facts to be Know by the end of KS1

Adding I			Bonds to 10		Adding 10			Bridging/ compensating			YI facts	
+	0	1	2	3	4	5	6	7	8	9	10	
0	$0+0$	$0+1$	$0+2$	$0+3$	$0+4$	$0+5$	$0+6$	$0+7$	$0+8$	$0+9$	$0+10$	
I	$1+0$	$1+1$	$1+2$	$1+3$	$1+4$	$1+5$	$1+6$	$1+7$	$1+8$	$1+9$	$1+10$	
2	$2+0$	$2+1$	$2+2$	$2+3$	$2+4$	$2+5$	$2+6$	$2+7$	$2+8$	$2+9$	$2+10$	
3	$3+0$	$3+1$	$3+2$	$3+3$	$3+4$	$3+5$	$3+6$	$3+7$	$3+8$	$3+9$	$3+10$	
4	$4+0$	$4+1$	$4+2$	$4+3$	$4+4$	$4+5$	$4+6$	$4+7$	$4+8$	$4+9$	$4+10$	
5	$5+0$	$5+1$	$5+2$	$5+3$	$5+4$	$5+5$	$5+6$	$5+7$	$5+8$	$5+9$	$5+10$	
6	$6+0$	$6+1$	$6+2$	$6+3$	$6+4$	$6+5$	$6+6$	$6+7$	$6+8$	$6+9$	$6+10$	
7	$7+0$	$7+1$	$7+2$	$7+3$	$7+4$	$7+5$	$7+6$	$7+7$	$7+8$	$7+9$	$7+10$	
8	$8+0$	$8+1$	$8+2$	$8+3$	$8+4$	$8+5$	$8+6$	$8+7$	$8+8$	$8+9$	$8+10$	
9	$9+0$	$9+1$	$9+2$	$9+3$	$9+4$	$9+5$	$9+6$	$9+7$	$9+8$	$9+9$	$9+10$	
10	$10+0$	$10+1$	$10+2$	$10+3$	$10+4$	$10+5$	$10+6$	$10+7$	$10+8$	$10+9$	$10+10$	

Times tables: the $\mathbf{2 1}$ facts*

		3	4	
$1 \times 1=1$	$2 \times 2=4$	$3 \times 3=9$	$4 \times 4=16$	$5 \times 5=25$
$1 \times 2=2$	$2 \times 3=6$	$3 \times 4=12$	$4 \times 5=20$	$5 \times 6=30$
$1 \times 3=3$	$2 \times 4=8$	$3 \times 5=1.5$	$4 \times 6=24$	$5 \times 7=35$
$1 \times 4=4$	$2 \times 5=10$	$3 \times 6=18$	$4 \times 7=28$	$5 \times 8=4.0$
$1 \times 5=5$	$2 \times 6=1.2$	$3 \times 7=21$	$4 \times 8=32$	$5 \times 9=4.5$
1 $\times 6=6$	$2 \times 7=1.4$	$3 \times 8=24$	$4 \times 9=36$	
$1 \times 7=7$	$2 \times 8=1.6$	$3 \times 9=27$		
$1 \times 8=8$	$2 \times 9=1.8$	(1)		
$1 \times 9=9$	4			

